Social Welfare and Transition Dynamics

Felix Wellschmied

UC3M
Macroeconomics III

Welfare Analysis and Policy Changes

Welfare Computation

- We may be interested in the "desirability" of a reform.
- Some agents lose, others gain.

Welfare Computation

- We may be interested in the "desirability" of a reform.
- Some agents lose, others gain.
- Utility not a cardinal measure. How to aggregate?

Welfare Comparison in Stationary Equilibrium

Assume agents solve

$$
\max \left\{\mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} \frac{c_{t}^{1-\gamma}}{1-\gamma}\right\}
$$

- There is some stochastic state vector \mathbf{x} and stationary policy rules.
- If reform is not enacted, the consumption function is $c(\mathbf{x})$.
- If reform is enacted, the consumption function becomes $\hat{c}(\mathbf{x})$.
- What is the consumption equivalence between the two worlds?

Welfare Comparison in Stationary Equilibrium II

Assume in $t=0$, agents are distributed according to $\lambda(\mathbf{x})$. We are interested in the ω^{U} that solves

$$
\int E_{0} \sum_{t=0}^{\infty} \beta^{t} U\left(\left[1+\omega^{U}\right] c(\mathbf{x})\right) d \lambda(\mathbf{x})=\int E_{0} \sum_{t=0}^{\infty} \beta^{t} U(\hat{c}(\mathbf{x})) d \hat{\lambda}(\mathbf{x})
$$

where $\hat{\lambda}(\mathbf{x})$ is the stationary distribution that occurs when the policy is enacted. The welfare measure is based on an unborn household (veil of ignorance).

Welfare Comparison in Stationary Equilibrium III

$$
\begin{gathered}
\int E_{0} \sum_{t=0}^{\infty} \beta^{t} \frac{\left(\left[1+\omega^{U}\right] c(\mathbf{x})\right)^{1-\gamma}}{1-\gamma} d \lambda(\mathbf{x})=\int E_{0} \sum_{t=0}^{\infty} \beta^{t} \frac{\hat{c}(\mathbf{x})^{1-\gamma}}{1-\gamma} d \hat{\lambda}(\mathbf{x}) \\
{\left[1+\omega^{U}\right]^{1-\gamma} \int E_{0} \sum_{t=0}^{\infty} \beta^{t} \frac{c(\mathbf{x})^{1-\gamma}}{1-\gamma} d \lambda(\mathbf{x})=\int E_{0} \sum_{t=0}^{\infty} \beta^{t} \frac{\hat{c}(\mathbf{x})^{1-\gamma}}{1-\gamma} d \hat{\lambda}(\mathbf{x})} \\
{\left[1+\omega^{U}\right]^{1-\gamma} \int V_{0}(\mathbf{x}) d \lambda(\mathbf{x})=\int \hat{V}_{0}(\mathbf{x}) d \hat{\lambda}(\mathbf{x})} \\
\omega^{U}=\left(\frac{\int \hat{V}_{0}(\mathbf{x}) d \hat{\lambda}(\mathbf{x})}{\int V_{0}(\mathbf{x}) d \lambda(\mathbf{x})}\right)^{\frac{1}{1-\gamma}}-1
\end{gathered}
$$

Welfare Comparison in Stationary Equilibrium IV

$$
\omega^{U}=\left(\frac{\int \hat{V}_{0}(\mathbf{x}) d \hat{\lambda}(\mathbf{x})}{\int V_{0}(\mathbf{x}) d \lambda(\mathbf{x})}\right)^{\frac{1}{1-\gamma}}-1
$$

- $\omega^{U}>0$: The winners of the reform could compensate the losers.
- There maybe more losers than winners. You can compute it.
- Absent lump-sum taxation, redistribution may not be feasible.

Decomposing Welfare Change

Welfare is different because mean consumption differs:

$$
\begin{aligned}
& {\left[1+\omega^{L}\right] \int c(\mathbf{x}) d \lambda(\mathbf{x})=\int \hat{c}(\mathbf{x}) d \hat{\lambda}(\mathbf{x})} \\
& {\left[1+\omega^{L}\right] C=\hat{C}}
\end{aligned}
$$

Welfare is different because consumption volatility differs:

$$
V(\bar{c}(\mathbf{x}))=V\left(c_{0: \infty}(\mathbf{x})\right)
$$

Average certainty equivalence:

$$
\bar{C}=\int \bar{c}(\mathbf{x}) d \lambda(\mathbf{x})
$$

Cost of uncertainty:

$$
p^{u n c}=1-\left(\frac{V(\bar{C})}{V(C)}\right) \quad \omega^{u n c}=\frac{1-\hat{p}^{u n c}}{1-p^{u n c}}-1
$$

Decomposing Welfare Change II

Welfare is different because consumption inequality:

$$
p^{i n q}=1-\left(\frac{\int V(\bar{c}(\mathbf{x})) d \lambda(\mathbf{x})}{V(\bar{C})}\right) \quad \omega^{i n q}=\frac{1-\hat{p}^{i n q}}{1-p^{i n q}}-1
$$

Flodén (2001) shows aggregation hold:

$$
\omega^{U}+1=\left(1+\omega^{L}\right)\left(1+\omega^{u n c}\right)\left(1+\omega^{i n q}\right)
$$

Welfare with Transition Dynamics

So far, we compared welfare in old and new stationary equilibrium. Yet getting to new equilibrium takes time.

- Assume the government runs a "too large" welfare state.
- Given large insurance, people hold few assets.
- Reducing the welfare state in t_{0} leads to too large risk for households on the transition path.
- These transition dynamics may be more important than (discounted) stationary equilibrium comparison.

Solving Transition Path: Aiyagari

We know value and policy function in old and new stationary equilibrium: $v^{O}(a, \epsilon), \phi^{O}(a, \epsilon)$ and $v^{N}(a, \epsilon), \phi^{N}(a, \epsilon)$. Assume new equilibrium is reached in T.

$$
\begin{aligned}
& \text { What happens in between? Assume } \\
& K^{N}=\int a_{i} d \lambda^{N}(a, \epsilon)>K^{O}=\int a_{i} d \lambda^{O}(a, \epsilon) .
\end{aligned}
$$

Solution solves:

$$
\begin{aligned}
& c_{t}^{-\gamma}=\beta r_{t+1} \mathbb{E} c_{t+1}^{-\gamma} \\
& c_{t}+a_{t+1}=\left(1+r_{t}\right) a_{t}+w_{t} \epsilon \\
& a_{t+1} \geq \underline{a}
\end{aligned}
$$

To solve this in t, I need: r_{t}, r_{t+1}, w_{t}.
\qquad
I need $K_{t=0: T}$ with $K_{0}=K^{O}$ and $K_{T}=K^{N}$.

Algorithm Solving Transition Path: Aiyagari

- Solve stationary equilibrium under old and new policy.
- Assume new stationary equilibrium is reached after T periods.
- Guess transition path for $K_{t=1: T-1} . w_{t}=F_{L}\left(K_{t}\right), r_{t}=F_{K}\left(K_{t}\right)$.
- Given prices, solve household problem along the transition path.
- Compute $\hat{K}_{t}=\int a_{i} d \lambda_{t}(a, \epsilon)$ along transition path.
- If $\left|K_{t=1: T-1}-\hat{K}_{t=1: T-1}\right|>c r i t$ update initial guess.
- Iterate to convergence.

Back to Welfare

- The procedure gives two value function:
v^{0} when no reform is passed.
v^{1} when reform is passed (with transition path).

$$
\omega^{U}=\left(\frac{\int v^{1}(a, \epsilon) d \lambda_{0}(a, \epsilon)}{\int v^{0}(a, \epsilon) d \lambda_{0}(a, \epsilon)}\right)^{\frac{1}{1-\gamma}}-1
$$

References

Flodén, M. (2001): "The Effectiveness of Government Debt and Transfers as Insurance," Journal of Monetary Economics, 48, 81-108.

